Scope \& Sequence NSW Stage 2 (A) Yearly overview

Learning sequence	Term one	Term two	Term three	Term four
LS 1	Number and Algebra	Number and Algebra	Number and Algebra	Number and Algebra
	Big idea: The number system extends infinitely to very large and very small numbers	Big idea: The number system extends infinitely to very large and very small numbers	Big idea: The number system extends infinitely to very large and very small numbers	Big idea: The number system extends infinitely to very large and very small numbers
	Numbers to 10000	Numbers to 100000	Patterns	Number review
	- Apply place value to thousands - Read, represent and order numbers to 10000 - Partition numbers	- Apply place value to tens-of-thousands - Read, represent and order numbers to 10000 - Partition numbers	- Model, describe and record patterns of multiples - Identify and continue increasing and decreasing patterns - Explain properties of odd and even numbers - Multiply by one and zero	Review: - Term 1, Learning Sequence 1 - Term 2, Learning Sequence 1 - Term 3, Learning Sequence 1
LS 2	Number and Algebra	Number and Algebra	Measurement and Space	Number and Algebra
	Big idea: Addition and subtraction problems can be solved by using a variety of strategies	Big idea: Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations	Big idea: Understanding relationships between the properties of 2 D shapes helps visualise and organise spaces in the world	Big idea: Fractions represent multiple ideas and can be represented in different ways
	Addition and subtraction: mental strategies	Multiplication facts for 2, 4,5 and 10	2D shape properties	Fractions review
	- Apply associative property of addition - Solve inverse operations - Use flexible strategies to add and subtract: bridging, compensation, levelling and constant difference	- Model, describe and record patterns of multiples - Identify fact families - Use commutative property of multiplication	- Describe and compare 2D shapes - Identify parallel sides - Explain properties of quadrilaterals - Identify right angles in shapes	- Recreate the whole unit from a fractional part
LS 3	Measurement and Space	Measurement and Space	Number and Algebra \| Measurement and Space	Statistics and Probability
	Big idea: What needs to be measured determines the unit of measurement	Big idea: What needs to be measured determines the unit of measurement	Big idea: Making and using equal groups	Big idea: Data is collected to solve problems
	Time	Time	Multiplication and division	Chance (and data review)
	- Calculate duration of events - Identify half- and quarter-hour time - Read time as past and towards the hour - Read analog clocks to the minute	- Describe and follow routes using landmarks and directional language - Locate positions on grid maps	- Connect grouping to arrays - Estimate, measure and record area in cm^{2} and m^{2} - Model square numbers - Construct prisms and describe volume in layers - Record and compare volumes in numerals and words	- Use the language of chance - Record possible outcomes and combinations - Conduct chance experiments - Collect and display data
LS 4	Number and Algebra	Number and Algebra \| Measurement and Space	Number and Algebra \| Measurement and Space	Number and Algebra
	Big idea: Fractions represent multiple ideas and can be represented in different ways	Big idea: What needs to be measured determines the unit of measurement	Big idea: What needs to be measured determines the unit of measurement	Big idea: Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations
	Unit fractions	3D objects and capacity	Length and mass	Multiplication and division problems
	- Model fractions - Identify fraction families - Make thirds and fifths of a length	- Identify prisms, pyramids and cylinders - Construct 3D models - Create nets - Measure and record capacity using L - Estimate the capacity of containers	- Measure length using mm, cm and m - Estimate lengths and distances - Compare and order lengths and distances - Record and compare mass using Kg	- Use flexible strategies to solve word problems involving multiplication and division
LS 5	Number and Algebra \| Statistics and Probability	Number and Algebra \| Measurement and Space	Number and Algebra	Measurement and Space
	Big idea: Questions can be asked and answered by collecting and interpreting data	Big idea: Angles are the primary structural component of many shapes	Big idea: Addition and subtraction problems can be solved by using a variety of strategies	Big idea: Shapes encountered in daily life can be classified by their attributes
	Data	Angles	Addition and subtraction problems	2D shape transformations
	- 2D Shapes Review - Composite 2D shapes - Building up 3D objects	- Interpret simple maps - Following directions	- Doubling and halving - Model halves, quarters and eighths	- Identify and draw lines of symmetry - Create tessellating triangle designs: by reflecting, translating and rotating - Apply and describe amounts of rotation: half-, quarter-\& three-quarter-turns

Scope $\&$ Sequence NSW Stage 2 (A) Outcome map

Outcomes	Focus	Content	Located
MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands	Representing numbers using place value A	Whole numbers: Read, represent and order numbers to thousands	```Term 1 LS 1, 2, 5 Term 2 LS 1,4 Term 3 LS 1,5 Term4 LS 1```
		Whole numbers: Apply place value to partition and regroup numbers up to 4 digits	$\begin{aligned} & \text { Term } 1 \text { LS 1, } 2 \\ & \text { Term } 2 \text { LS 1, } 2 \\ & \text { Term } 3 \text { LS 1, } 5 \\ & \text { Term } 4 \text { LS 1, } 4 \end{aligned}$
MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3 -digit numbers	Additive relations A	Use the principle of equality	$\begin{aligned} & \text { Term } 1 \text { LS } 2 \\ & \text { Term } 2 \text { LS } 1 \\ & \text { Term } 3 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 1 \end{aligned}$
		Recognise and explain the connection between addition and subtraction	Term 1 LS 2 Term 3 LS 5
		Select strategies flexibly to solve addition and subtraction problems of up to 3 digits	Term 1 LS 2 Term 2 LS 1 Term 3 LS 5 Term 4 LS 1
		Represent money values in multiple ways	Term 3 LS 5
MA2-MR-01 represents and uses the structure of multiplicative relations to 10×10 to solve problems	Multiplicative relations A	Generate and describe patterns	```Term 1 LS 1, 4 Term 2 LS 2 Term 3 LS 1, 2, } Term 4 LS 2, 4, 5```
		Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10	Term 2 LS 2 Term 3 LS 1, 2, 3 Term 4 LS 4
		Recall multiplication facts of 2 and 4,5 and 10 and related division facts	```Term 1 LS 4 Term 2 LS 2 Term 3 LS 1, 2, 3 Term4 LS 4```
		Represent and solve problems involving multiplication fact families	Term 2 LS 2 Term 3 LS 1 Term 4 LS 4
MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths)	Partitioned fractions A	Create fractional parts of a length using techniques other than repeated halving	Term 1 LS 4 Term 2 LS 5 Term 4 LS 2
		Model and represent unit fractions, and their multiples, to a complete whole on a number line	
MA2-GM-01 uses grid maps and directional language to locate positions and follow routes	Geometric measure A	Position: Interpret movement on a map	Term 2 LS 3
		Position: Locate positions on grid maps	
MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres	Geometric measure A	Length: Measure and compare objects using metres, centimetres and millimetres	Term 1 LS 4 Term 3 LS 4 Term 4 LS 2

Outcomes	Focus	Content	Located
MA2-GM-03 identifies angles and classifies them by comparing to a right angle	Geometric measure A	Angles: Identify angles as measures of turn	$\begin{aligned} & \text { Term } 2 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 5 \end{aligned}$
MA2-2DS-01 compares two-dimensional shapes and describes their features	Two-dimensional spatial structure A	2D shapes: Compare and describe features of two-dimensional shapes	Term 1 LS 3 Term 3 LS 2, 3 Term 4 LS 5
MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes	Two-dimensional spatial structure A	2D shapes: Transform shapes by reflecting, translating and rotating	Term 2 LS 3 Term 3 LS 2 Term 4 LS 5
MA2-2DS-03 estimates, measures and compares areas using square centimetres and square metres	Two-dimensional spatial structure A	Area: Use square centimetres to measure and estimate the areas of rectangles	Term 3 LS 3
		Area: Use square metres to measure and estimate the areas of rectangles	
MA2-3DS-01 measures, records, compares and estimates the masses of objects using uniform informal units	Three-dimensional spatial structure A	3D objects: Make models of three-dimensional objects to compare and describe key features	$\begin{aligned} & \text { Term } 2 \text { LS } 4 \\ & \text { Term } 3 \text { LS } 3 \end{aligned}$
MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres	Three-dimensional spatial structure A	Volume: Measure and order containers using litres	$\begin{aligned} & \text { Term } 2 \text { LS } 4 \\ & \text { Term } 3 \text { LS } 3 \end{aligned}$
		Volume: Compare objects using familiar metric units of volume	Term 2 LS 4
MA2-NSM-01 estimates, measures and compares the masses of objects using kilograms and grams	Non-spatial measure A	Mass: Compare objects using the kilogram	Term 3 LS 4
MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and seconds	Non-spatial measure A	Time: Represent and read analog time	$\begin{aligned} & \text { Term } 1 \text { LS } 3 \\ & \text { Term } 2 \text { LS } 5 \end{aligned}$
MA2-DATA-01 collects discrete data and constructs graphs using a given scale	Data A	Collect discrete data	$\begin{aligned} & \text { Term } 1 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
		Organise and display data using tables and graphs	$\begin{aligned} & \text { Term } 1 \text { LS } 5 \\ & \text { Term } 4 \text { LS } 3 \end{aligned}$
MA2-DATA-02 interprets data in tables, dot plots and column graphs	Data A	Interpret and compare data	Term 4 LS 3
MA2-CHAN-01 records and compares the results of chance experiments	Chance A	Identify possible outcomes from chance experiments	Term 4 LS 3

Scope \& Sequence NSW Stage 2 (A) Term 1

NSW New Syllabus (2023) Stage 03

LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Numbers to 10 000 \dagger	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-MR-0 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems	Representing numbers using place value A Multiplicative relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns	Represent numbers using place value (A) - Place Value - Thousands - Expanding Numbers - Put in Order 1 - Ascending Order - Descending Order - Which is Bigger? - Which is Smaller? - Greater Than or Less Than 1 - Greater or Less to 100 - Place Value 3 - Partition and Rename 2 - Nearest 1000 ? - Missing Numbers 1 Non-spatial measure: mass a time (A) - What's the Temperature	Represent 4-digit numbers - Reading \& representing numbers to 1000 - Counting by tens \& hundreds to 1000 - Comparing \& ordering numbers up to 10000 - Partitioning numbers to 4 digits	Number \& Algebra, Whole Number 2-4 - Top score, DOK 2 - Partitioning 4-digit numbers, DOK 3 - Bank mistake, DOK 3 - Alex's number, DOK 3 - Find the 4 digits, DOK 3 - Football friends, DOK 3 - 33 beads, DОк 3 Number \& Algebra, Subtraction 2-4 - Magic 9, DOK 3 Number \& Algebra, Whole Number 3-5 - Build the number, DOK 3	Year 3 Series C Reading and Understanding Whole Numbers - Looking at whole numbers pp 1-6 - Place value of whole numbers pp 1-3 Year 4 Series D Reading and Understanding Whole Numbers - Looking at whole numbers pp 1-8 - Place value of whole numbers pp 1-8
LS 2 Big idea Addition and subtraction problems can be solved by using a variety of strategies Topic Addition and subtraction: mental strategies	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3-digit numbers	Representing numbers using place value A Additive relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Use the principle of equality - Recognise and explain the connection between addition and subtraction - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits	Additive relations: up to 3 digits (A) - Add Two 2-Digit Numbers - Adding to 2 -digit numbers - Magic Mental Addition - Complements to 50 and 100 - Add 3 Numbers: Bonds to 100 - Compensation - Add - Estimate Sums - Subtract Tens - Magic Mental Subtraction - Column Subtraction - 2-Digit Differences: Regroup - Repartition to Subtract - Compensation - Subtract - Estimate Differences - Bump Add and Subtract - Related Facts 1 - Bar Model Problems 1 - Bar Model Problems 2 - Missing Values	Mental strategies to add or subtract - Adding using jump strategy to 3 digits - Subtracting using jump strategy to 3 digits - Add/subtract using jump strategy to 3 digits - Adding using bridging to 10 up to 3 digits - Subtracting using bridging to 10 up to 3 digits - Add/subtract using bridging to 10 up to 3 digits - Adding using split strategy to 3 digits - Subtracting using split strategy to 3 digits - Add/subtract using split strategy to 3 digits - Adding using round \& compensate to 3 digits - Subtracting using round \& compensate to 3 digits - Add/subtract using round \& compensate to 3 digits Select strategies to add or subtract - Add/subtract using bar model to 3 digits - Selecting strategies to add/subtract to 3 digits Addition \& subtraction to 3 digits - Adding \& subtracting multiple single-digit numbers - Bonds to 100 - Connecting addition \& subtraction - Estimating with addition \& subtraction - Add/subtract multiples of 10 to 3 -digit numbers	 Subtraction 2-4 - Calculate through this maze, DOK 3 - Make 200, DOK 3 - Magic 9, DOK 3	Year 3 Series C Addition and Subtraction - Addition mental strategies pp 1-4 - Subtraction mental strategies pp 15-16 Year 4 Series D Addition and Subtraction - Addition mental strategies pp 1-4 - Subtraction mental strategies pp 16-19

Scope $\&$ Sequence NSW Stage 2 (A) Term 1

NSW New Syllabus (2023) Stage 03							
LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 3 Big idea What needs to be measured determines the unit of measurement Topic Time	MA2-2DS-01 compares two-dimensional shapes and describes their features MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and seconds	Two-dimensional spatial structure A Non-spatial measure A	- 2D shapes: Compare and describe features of two-dimensional shapes - Time: Represent and read analog time	Non-spatial measure: mass \& time (A) - Half Hour Times - Five Minute Times	Represent time using analogue displays - Representing \& reading analogue time displays	Measurement, Time 2-4 - Scenic stroll, DOK 3	Year 3 Series C: Time and Money - Time O'clock p 14 - Time Half Past pp 15-19 - Time Quarter Past pp 20-21 - Time Quarter To p 22 - Time Quarter to and Past p 23 - Time- A Day p 24
LS 4 Big idea Fractions represent multiple ideas and can be represented in different ways Topic Unit fractions	MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths) MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres	Multiplicative relations A Partitioned fractions A Geometric measure A	- Generate and describe patterns - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Create fractional parts of a length using techniques other than repeated halving - Model and represent unit fractions, and their multiples, to a complete whole on a number line - Length: Measure and compare objects using metres, centimetres and millimetres	Partitioned fractions (B) - Compare Fractions 1a - Compare Fractions 1b - Comparing Fractions 1	Halves, quarters, thirds \& fifths - Halves, quarters \& eighths - Thirds \& fifths - Working with unit fractions		Year 3 Rich Learning Task - Build a number Year 4 Series D Fractions - Introducing fractions pp 1-12 Year 5 Series E Fractions - Working with fractions pp 6-11
LS 5 Big idea Questions can be asked and answered by collecting and interpreting data Topic Data	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-DATA-01 collects discrete data and constructs graphs using a given scale MA2-DATA-02 interprets data in tables, dot plots and column graphs	Representing numbers using place value A Data A	- Whole numbers: Read, represent and order numbers to thousands - Collect discrete data - Organise and display data using tables and graphs"	Data (A) - Sorting Data - Column Graphs - Picture Graphs: Single-Unit Scale - Pictographs - Tallies	Collect $\&$ organise discrete data - Posing questions \& collecting discrete data - Organising \& displaying discrete data using graphs Read tables, dot plots \& column graphs - Interpreting tables \& column graphs - Comparing data displays	Statistics \& Data 2-4 - Transport trouble, DOK 3 - What's missing? DOK 3	Year 4 Series D Chance and Data - Data pp 10-14 - Data - dot plots pp 17-18

Scope \& Sequence NSW Stage 2 (A) Term 2

NSW New Syllabus (2023) Stage 03

LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Numbers to 100000	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3-digit numbers	Representing numbers using place value A Additive relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Use the principle of equality - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits		Represent 5-digit numbers - Reading, representing \& ordering numbers to 10000 - Rounding numbers to 10000 - Partitioning 5-digit numbers		Year 5 Series E Reading and Understanding Whole Numbers - Looking at whole numbers - reading and writing numbers to 9999 pp 1-2 - Looking at whole numbers - ordering numbers to 9999 pp 3-4 - Place value of whole numbers - place value to 4 digits pp 9-10 - Place value of whole numbers expanded notation pp 11-12
LS 2 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations Topic Multiplication facts for 2, 4, 5 and 10	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems	Representing numbers using place value A Multiplicative relations A	- Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Represent and solve problems involving multiplication fact families	Multiplicative relations (A) - Counting by Tens - Count by Fives - Counting by Fives - Counting by Twos - Count by $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s - Skip Counting - Counting up in 4s - Skip Counting with Coins - Grouping in Twos - Grouping in Fours - Grouping in Fives - Grouping in Tens - Model multiplication to 5×5 - Fact Families: Multiply and Divide - Multiplication Turnarounds - Halve it!	Multiplicative facts for 2, 4, 5 \& 10 - Recalling multiplication \& division facts of 2 - Recalling multiplication \& division facts of 4 - Recalling multiplication \& division facts of 5 - Recalling multiplication \& division facts of 10 - Solving problems using multiplication facts		Year 5 Series E Multiplication and Division - Multiplication facts pp 1-4 Year 4 Series D Multiplication and Division - Division pp 1-6
LS 3 Big idea Visual representations help to understand aspects of the world (chance and position) Topic Position	MA2-GM-01 uses grid maps and directional language to locate positions and follow routes MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes	Geometric measure A Two-dimension al spatial structure A	- Position: Interpret movement on a map - Position: Locate positions on grid maps - 2D shapes: Transform shapes by reflecting, translating and rotating"	Geometric measure: position (A/B) - Following Directions - Coordinate Meeting Place - What Direction was That? - Using a key	Use grid maps to describe position - Interpreting maps to describe position - Locating positions on a map	Geometry, Symmetry, Location 2-4 - A day on the farm, DOK 3 - Mighty maze, DOK 4 Geometry, Symmetry, Location 3-5 - Drawing with grids, DOK 3	Year 4 Series D Shape, Space and Position - Position pp 1-7 - 2D shapes pp 5-7

Scope \& Sequence NSW Stage 2 (A) Term 2

LS \& Topic	Outcomes	Focus	Content	NSW New Syllabus (2023) Stage 03		Challenges	Ebooks
				Course Topic \& Activities	Skill Quests		
LS 4 Big idea What needs to be measured determines the unit of measurement Topic 3D objects and capacity	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-3DS-01 makes and sketches models and nets of three-dimensional objects including prisms and pyramids MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres	Representing numbers using place value A Three-dimension al spatial structure A	- Whole numbers: Read, represent and order numbers to thousands -3D objects: Make models of three-dimensional objects to compare and describe key features - Volume: Measure and order containers using litres	3D spatial structure: 3D objects (A) - Prisms and Pyramids - Collect the Objects - Match the Object 3D spatial structure: capacity (A) - How Full? - Which Holds More? - Filling Fast!	Identify prisms, pyramids \& cylinders - Identifying prisms - Identifying pyramids \& cylinders - Describing key features of prisms \& pyramids - Making models of prisms \& pyramids - Introducing nets of prisms	Geometry, 3D Shapes 2-4 - Opposite shapes, DOK 4	Year 4 Series D Shape, Space and Position -3D shapes pp 1-3 Year 4 Series D Measurement - Volume and capacity p 1
LS 5 Big idea Angles are the primary structural component of many shapes Topic Angles	MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths) MA2-GM-03 identifies angles and classifies them by comparing to a right angle MA2-NSM-02 represents and interprets analog and digital time in hours, minutes and seconds	Partitioned fractions A Geometric measure A Non-spatial measure A	- Create fractional parts of a length using techniques other than repeated halving - Model and represent unit fractions, and their multiples, to a complete whole on a number line - Angles: Identify angles as measures of turn - Time: Represent and read analog time	Geometric measure: angle (A/B) - Equal Angles - Comparing Angles - Right Angle Relation - What Type of Angle? - Classifying Angles	Identify \& compare angles - Identifying angles as measures of turn		Year 5 Series E Space, Shape and Position - Lines, angles and shapes - angles pp 2-3

Scope \& Sequence NSW Stage 2 (A) Term 3

LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic Patterns	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems	Representing numbers using place value A Multiplicative relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4 , 5 and 10 and related division facts - Represent and solve problems involving multiplication fact families		Number patterns - Generating/describing patterns $(1,2,5,10,25)$ - Generating/describing patterns ($3,4,6,7,8,9$) - Identifying number patterns - Investigating odd \& even numbers - Understand the property of 0 \& 1 in multiplication		Year 4 Series D Multipication and Division - Mental multiplication strategies pp 1-6 Year 3 Series C Patterns and Algebra - Patterns and functions pp 1-12 - Equations and equivalence pp 13-22
LS 2 Big idea Understanding relationships between the properties of 2D shapes helps visualise and organise spaces in the world Topic 2D shape properties	MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems MA2-2DS-01 compares two-dimensional shapes and describes their features MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes	Multiplicative relations A Two-dimensional spatial structure A	- Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4 , 5 and 10 and related division facts - 2D shapes: Compare and describe features of two-dimensional shapes - 2D shapes: Transform shapes by reflecting, translating and rotating	2 D spatial structure: shape \& area (A / B) - What Line am I? - Shapes - Collect the Shapes - Collect More Shapes - Collect the Shapes 2	Identify features of 2D shapes - Comparing \& describing features of quadrilaterals - Identifying, classifying \& sorting 2D shapes	Geometry, 2D shapes 2-4 - Sort these shapes out! DOK 3 - Blip and the rectangle, DOK 3	Year 4 Series D Shape, Space and Position - 2D shapes p 4 Year 5 Series E Shape, Space and Position - Lines and angles pp 8-9
LS 3 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies, and representations Topic Linking multiplication to area and volume	MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems MA2-2DS-01 compares two-dimensional shapes and describes their features MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes MA2-3DS-01 makes and sketches models and nets of three-dimensional objects including prisms and pyramids MA2-3DS-02 estimates, measures and compares capacities (internal volumes) using litres, millilitres and volumes using cubic centimetres	Multiplicative relations A Two-dimensional spatial structure A Three-dimensional spatial structure A	- Generate and describe patterns * Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4 , 5 and 10 and related division facts - 2D shapes: Compare and describe features of two-dimensional - Area: Use square centimetres to measure and estimate the areas of rectangles - Area: Use square metres to measure and estimate the areas of rectangles -3D objects: Make models of three-dimensional objects to compare and describe key features - Volume: Compare objects using familiar metric units of volume	Multiplicative relations (A) - Arrays 1 - Arrays 2 2D spatial structure: shape \& area (A/B) - Area of Shapes - Equal Areas 3D spatial structure: capacity (A) - Comparing Volume	Calculate area of a rectangle - Using cm^{2} to measure areas of rectangles - Using m^{2} to measure areas of rectangles Measure capacity \& volume - Measuring \& comparing volumes using cubic blocks	Number \& Algebra, Multiplication \& Division 2-4 - Party time, DOK 2 Capacity 2-4 - Cube faces, DOK 3	Year 3 Rich Learning Task - Freckles Year 5 Series E Length, Area and Perimeter - Area p 5

Scope \& Sequence NSW Stage 2 (A) Term 3

LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 4 Big idea What needs to be measured determines the unit of measurement Topic Length and mass	MA2-RN-02 represents and compares decimals up to 2 decimal places using place value MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres MA2-NSM-01 estimates, measures and compares the masses of objects using kilograms and grams	Representing numbers using place value B Geometric measure A Non-spatial measure A	- Decimals: Extend the application of the place value system from whole numbers to tenths and hundredths - Length: Measure and compare objects using metres, centimetres and millimetres - Mass: Compare objects using the kilogram	Geometric measure: length (A/B) - How Long is That? - Measuring Length - Perimeter of Shapes - Converting cm and mm - Centimetres and Metres Non-spatial measure: mass \& time (A) - Everyday Mass	Use metric measurements for lengths - Measuring in $\mathrm{m}, \mathrm{cm}, \mathrm{mm}$ - Selecting measures for length ($\mathrm{m}, \mathrm{cm}, \mathrm{mm}$) - Comparing length measurements - Ordering length measurements Measure mass in kg \& g - Introducing a formal measure for weight (kg)	Measurement, Length 2-4 - Measured to perfection (mm), DOK 2 - Paw prints, DOK 3	Year 4 Series D Measurement - Units of length pp 1-5
LS 5 Big idea Addition and subtraction problems can be solved by using a variety of strategies Topic Addition and subtraction problems	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2- and 3-digit numbers	Representing numbers using place value A Additive relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4digits - Use the principle of equality - Recognise and explain the connection between addition and subtraction - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits - Represent money values in multiple ways	Additive relations: up to 3 digits (A) - How much Change?	Select strategies to add or subtract - Using addition \& subtraction with money halving		Year 5 Series E Addition and Subtraction - Addition mental strategies pp 12-13 - Subtraction mental strategies pp 24-25

Scope \& Sequence NSW Stage 2 (A) Term 4

LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 1 Big idea The number system extends infinitely to very large and very small numbers Topic	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-AR-01 selects and uses mental and written strategies for addition and subtraction involving 2 - and 3-digit numbers	Representing numbers using place value A Additive relations A	- Whole numbers: Read, represent and order numbers to thousands - Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Use the principle of equality - Select strategies flexibly to solve addition and subtraction problems of up to 3 digits	Refer to: - Term 1 , Learning Sequence 1 - Term 2, Learning Sequence 1 - Term 3, Learning Sequence 1			Year 6 Series F Reading and Understanding Whole Numbers - Looking at whole numbers pp 1-3 Year 6 Series F Addition and Subtraction - Addition Mental Strategies pp 1-8 - Subtraction Mental Strategies pp 9-16
LS 2 Big idea Fractions represent multiple ideas and can be represented in different ways Topic Fractions review	MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems MA2-PF-01 represents and compares halves, quarters, thirds and fifths as lengths on a number line and their related fractions formed by halving (eighths, sixths and tenths) MA2-GM-02 measures and estimates lengths in metres, centimetres and millimetres	Multiplicative relations A Partitioned fractions A Geometric measure A	- Generate and describe patterns - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Create fractional parts of a length using techniques other than repeated halving - Model and represent unit fractions, and their multiples, to a complete whole on a number line - Length: Measure and compare objects using metres, centimetres and millimetres	Refer to : - Term 1, Learning Sequence 4			Year 5 Series E Multiplication and Division - Multiplication facts -5 and 10 times tables pp 1-2 - Multiplication facts -2 and 4 times tables pp 3-4 Year 4 Series D Measurement - Units of Length pp 1-5
LS 3 Big idea Questions can be asked and answered by collecting and interpreting data Topic	MA2-DATA-01 collects discrete data and constructs graphs using a given scale MA2-DATA-02 interprets data in tables, dot plots and column graphs MA2-CHAN-01 records and compares the results of chance experiments	Data A Chance A	- Collect discrete data - Organise and display data using tables and graphs - Interpret and compare data - Identify possible outcomes from chance experiments	Chance (A) - Most Likely and Least Likely - How many Combinations? - Will it Happen?	Chance concepts - Identifying outcomes from chance experiments	 Probability 2-4 - Picking plums, DOK 3 - Multiple mayhem, DOK 3	Year 4 Series D Chance and Data - Data pp 15-21 Year 5 Series E Chance and Data -Chance pp 1-2

Scope \& Sequence NSW Stage 2 (A) Term 4

LS \& Topic	Outcomes	Focus	Content	Course Topic \& Activities	Skill Quests	Challenges	Ebooks
LS 4 Big idea Multiplicative thinking involves flexible use of multiplication and division concepts, strategies and representations Topic Multiplication and division problems	MA2-RN-01 applies an understanding of place value and the role of zero to represent numbers to at least tens of thousands MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems	Represents numbers using place value A Multiplicative relations A	- Whole numbers: Apply place value to partition and regroup numbers up to 4 digits - Generate and describe patterns - Use arrays to establish multiplication facts from multiples of 2 and 4,5 and 10 - Recall multiplication facts of 2 and 4,5 and 10 and related division facts - Represent and solve problems involving multiplication fact families	Multiplicative relations (A) - Grouping in Sevens - Grouping in Eights		 Algebra, Division 2-4 - A wheel problem, DOK 3	Year 4 Series D Multiplication and Division - Introducing multiplication groups of 5 pp 1-4 - Introducing Multiplication - 10 times tables pp 5-6 - Introducing multiplication - multiplying numbers by 0 and 1 p 7 - Multiplication facts - 2 times table pp 8-9 - Multiplication facts -4 times table pp 10-11
LS 5 Big idea Shapes encountered in daily life can be classified by their attributes Topic 2D shape transformations	MA2-MR-01 represents and uses the structure of multiplicative relations to $10 \times$ 10 to solve problems MA2-GM-03 identifies angles and classifies them by comparing to a right angle MA2-2DS-01 compares two-dimensional shapes and describes their features MA2-2DS-02 performs transformations by combining and splitting two-dimensional shapes	Multiplicative relations A Geometric measure A Two-dimensional spatial structure A	- Generate and describe patterns - Angles: Identify angles as measures of turn - 2D shapes: Compare and describe features of two-dimensional shapes - 2 D shapes: Transform shapes by reflecting, translating and rotating	2D spatial structure: transformations (A/B) - Symmetry - Symmetry or Not? - Flip, Slide, Turn - Transformations - Rotational Symmetry	Perform transformations - Transforming shapes by translation \& reflections - Recognising line symmetry - Transforming shapes by rotation	Geometry, Symmetry, Location 2-4 - Flutter bye, DOK 4	Year 4 Series D Space Shape and Position - Investigating 2D shapes - symmetry and tessellation pp 9-10

